
Journal o f  Statistical Physics, Vol. 53, Nos. 5/6, 1988 

Equivalence of Certain Convex and Nonconvex Models 
of Spatially Modulated Structures 
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The ground states of a certain class of one-dimensional models with a non- 
convex interatomic interaction which exhibit spatially modulated structures are 
proved to be equivalent to those of the Frenkel-Kontorova-type models with a 
convex interatomic interaction. One of the nonconvex models numerically 
studied by Marchand et al. belongs to this class, and it turns out to be 
equivalent to the exactly solvable model with a complete devil's staircase studied 
by Aubry. 
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1. I N T R O D U C T I O N  

Our understanding of commensurate incommensurate phase transitions, (1) 
in which a complex phase diagram results from two (or more) competing 
length scales whose ratio can "lock" at a series of rational values as the 
temperature (pressure, etc.) varies, has been greatly aided by the study of 
simple one-dimensional models with nearest neighbor interaction, (2) whose 
properties can be worked out in considerable detail. In particular, a great 
deal is known (including a number of mathematically rigorous results) (3) 
about the ground states of the Frenkel-Kontorova (4) model and its exten- 
sions in cases in which the interparticle potential, W in Eq. (1) below, is a 
c o n v e x  function. 

Nonconvex interactions are equally (and sometimes more) reasonable 
from a physical point of view, even though they seem less easy to analyze 
mathematically. Numerical studies of several nonconvex models (s-8) have 
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produced features in phase diagrams which seem not to be observed in the 
convex case (and are sometimes rules out by rigorous theorems). However, 
there are other instances (6'7'9) in which the ground-state phase diagrams 
resemble the convex case. 

The purpose of this paper is to show that the ground state of a certain 
class of nonconvex models can be mapped onto those of corresponding 
convex models and vice versa. This result opens up the possibility of 
applying some of the rigorous results and the detailed analysis available for 
the convex case to a category of nonconvex models with nontrivial phase 
transitions. To be sure, this category is fairly special, but the equivalence 
which we shall demonstrate is nontrivial, and it may prove to be of some 
use in identifying which features of nonconvex interactions lead to phase 
transitions which are qualitatively different from the convex case. 

2. EQUIVALENCE OF CONVEX AND NONCONVEX MODELS 

We consider a one-dimensional system with energy 

H = ~  [V(u,)+ W(u,-u,_l)] (1) 
n 

where the real number u,, denotes the position of the nth (classical) atom, 
V(x) is an external potential, and W(y) is the interaction between 
neighboring atoms a distance y apart. (One caia think of V as arising from 
atoms other than those under consideration, whose positions remain fixed.) 
A configuration u is a collection {u,,} of atomic positions. 

The models of interest to us are constructed as follows. Let Vo(x) be a 
continuous function which tends to + ~ as x goes to + ~ or - ~ ,  chosen 
so that it agrees with the function (see Fig. 1) 

V*(x) = min Vo(x + m) (2) 
mE?7 

for x inside an interval [Xo, x0 + 1] of unit length. The minimum is over all 
integers, and consequently V* is periodic: V * ( l + x ) =  V*(x). Next let 
Wo(y) be a strictly convex function with a minimum at y---7, 

0~<7~<1 (3) 

and define (see Fig. 1) 

WI(y) = min{ Wo(y), W0(1 + y)} 

W*(y) = min Wo(y + m) 
m E ~ 7 

(4) 

(5) 
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(o) 
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Yo- I Yo r Yo + I 

Fig. 1. (a) The potential V0 indicated by the heavy curve coincides with V*, the light curve, 
between x0 and Xo + 1. (b) The interaction W0 is indicated by the line with dots, W, by the 
heavy curve, and W* by the light curve (except where it coincides with W1). 

If Yo is defined by the relation Wo(Yo)= Wo(Yo+ 1), then W o, W1, and 
W* coincide on the interval [-Yo, Yo + 1] and W1 and W* on the interval 
[Yo-  1, Yo + 1]. Note that W*, like V*, is periodic with period 1. 

We now define the models of interest to us by giving for each of them 
the pair of functions (V, W) which enter (1): 

Model I: V= V*, W =  W o 

Model II: V= Vo, W= W~ 

Model III: V-- V*, W= W* 

Model I is the type which has been studied extensively, especially by 
Aubry and his collaborators~ V is periodic and W is strictly convex. 
Indeed, any such model with continuous V is of this form, for if the period 
is different from 1, one simply rescales x and y, and given V* -- V, it is easy 
to construct a corresponding Vo (in many different ways). Model II has a 
nonconvex W with a double well (Fig. 1). The particular case 

Vo(x) = �89 Wo(y) = � 8 9  ~)~ (6) 

822/53/5-6-2 
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was studied in refs. 6 and 7, using a slightly different notation. Note that we 
do not require that Vo be convex. 

Model III can be thought of as the "compact" version of model I: since 
both V and W are periodic, the energy remains invariant if the position of 
any atom is changed by a integer, and hence one need only study the case 
where all the u, fall in the same unit interval, say [0, 1). It was employed 
by Chou and Griffiths (m~ in numerical studies of model I. 

We shall show that the ground states of all three models are equivalent 
by constructing maps (next paragraph) which carry one onto another with 
no change in energy. By "ground state" we shall mean a configuration of a 
finite number of atoms which minimizes (1), e.g., for n running from 
- N +  1 to N. The results will then apply to infinite configurations obtained 
by letting N tend to infinity in a suitable way. This approach is not the one 
employed in either ref. 3 or 10, where only infinite configurations were 
considered. The resulting ground states for model I have a close affinity 
with those in ref. 10. They are, in particular, "minimal-enthalpy" states. 
However, we have not worked out the technical details. 

The maps carrying configurations of one model onto another always 
consist in adding suitable integers to the atomic positions in order to 
obtain a new set of positions. For convenience we shall let u, v, and w stand 
for configurations of I, II, and III, respectively. For maps of I or II onto 
III, the added integer is zero: wj = uj (or vj). For maps of I or III onto II we 
demand that the image configuration v satisfy 

Xo<<.vj<xo+ 1 (7) 

Finally, for maps of II or III onto I, we demand that the position of some 
specific atom in the image configuration u, say Uo, lie in some specified unit 
interval, say [0, 1), and the remainder be chosen so that 

yo<<.uj+,-uj< Yo+ 1 (8) 

for all j. 
Let HI, HII, and H m be the energies for models I, II, and III, respec- 

tively. As V* is always less than or equal to Vo, and W* is less than or 
equal to both W0 and W~, it follows that the energy Hm(w) for a con- 
figuration w obtained by mapping a configuration u or v of I or II onto III 
cannot exceed H,(u) or Hii(v), as the case may be. This leads to an 
important conclusion: 

If it can be shown that any ground state w of III maps onto a state u 
in I and a state v in II with the same energy, then the maps defined in the 
previous paragraph always map ground states onto ground states. 
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Suppose, for example, that w is a ground state and Hn(v ) = H i i i ( w ) ,  

but v is not a ground state of II. Then there is a g in II with lower energy, 
whose image # in III cannot have larger energy: 

Hm(# )  ~< HH(v) < H,,(v) = Hm(w)  (9) 

contradicting the assumption that w is a ground state of III. Suppose, on 
the other hand, that ~ is a ground state of II, but its image # is not a 
ground state of III. Then there is (by continuity and compactness) a 
ground state w of III of lower energy which maps onto a v with equal 
energy: 

HII((;) = HtII(W ) < HIII()~ ) ~ HII(~ ) (10) 

contradicting the assumption that ~5 is a ground state of II. The same 
argument works equally well for I in place of I1. That ground states of I 
map onto II (and vice versa) is a consequence of first mapping I to III and 
then III to II (or the reverse). 

What remains is to show that any ground state w of III maps onto 
states of I and II with the same energy. For  I the argument is elementary: 
the map obviously preserves the value of V= V* for each atom, as V* is 
periodic, while (8) guarantees that the interaction energy Wo equals W*. 
For  II, (7) ensures that the V contributions to the energy are the same. 
However, one must in addition show that 

Y o -  1 <~ vj+ l-vj<<, yo + 1 (11) 

in order that W 1 give the same result as W*. To this end we first map w 
onto u and employ the result (see Appendix) that for any ground state u 
of I, 

0 ~ < u j + l - u j ~  1 (12) 

The map from I onto II is given by the explicit formula 

v j = u j -  I n t ( u j - x o )  (13) 

where Int(x) is the largest integer not exceeding x. From (12) we see that 
Int(uj+ ~ - x 0 ) - I n t ( u j - x o )  is either 0 or 1, whence by (13) it follows that 
( V j + l - v j ) - ( u j + l - u j )  is either 0 or -1 .  Then ( l l )  follows from (8). 

3. R E M A R K S  A N D  E X A M P L E S  

The equivalence of the ground states of models I and II depends on 
(3): the minimum of Wo must lie between 0 and 1. If in addition to the con- 
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ditions given in Section 2 one assumes that Vo(x) has a unique absolute 
minimum at x = s it can be shown (we shall not given the argument here) 
that the ground state of model II as N becomes infinite is 

v , = 2  (14) 

for all n, for 7 < 0 or 7 > I. But in general the ground state of I will not be 
the image of this v under the map discussed above. 

For the specific case (6), model II has been studied numerically by 
Marchand et al., ~6'7) while Aubry (H) has obtained analytic expressions for 
the phase boundaries for the commensurate phase of model I. We have 
used the latter to compute phase boundaries to compare with the 
numerical results in Fig. 2 of ref. 6 or Fig. 6 of ref. 7. The agreement is 
excellent (confirming, incidentally, the general accuracy of the 
minimization eigenvalue approach used in refs. 6 and 7). 

It is also worth remarking that there is an alternative way to 
demonstrate the equivalence of the two models in the present case, (6). 
This is done by mapping model II to a spin model. We define spin 
variables Sn, associated with a configuration v in model II, by 

I if v ~ - v n _ l > y o  (15) 
S , =  _ if v , - v ,_ l<~yo  

Then, as long as stationary configurations (satisfying OH/Ovn=O) are 
concerned, the energy of model II with (6) can be re'written as 

H , , = ~ J ( n - m ) S n S , , , +  5 7 -  S. (16) 
/7 m 

where the "exchange interaction" J(n) between two spins n lattice sites 
apart is given by 

1 - r  
J(n) - 8(1 + ri rl"l (17) 

with r being defined by 

K 1 
r= 1 + ~ - - ~  (K2 +4K) ~/2 (18) 

Equation (16) is derived by using the technique described in ref. 11. The 
spin Hamiltonian (16) belongs to the class of Ising models studied by Bak 
and Bruinsma/12) Aubry m) showed that such Ising modes can be mapped 
onto models of type I (in general, with long-range interatomic inter- 
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actions). Applying his prescription to the specific case (16), one obtains 
model I with (6). On the other hand, the Iatter can be mapped back onto 
the former under the condition (3). Thus, the equivalence of models I and 
II with (6) is established. [The spin model (16) has been studied by 
Ishimura (13) and the phase diagram for ground states has been obtained in 
some detail, which is consistent with the results computed from Aubry's 
analytic expressions mentioned in the preceding paragraph.] 

A P P E N D I X .  D E R I V A T I O N  OF (12)  

It must be shown that any ground state of model I, with 7 in the range 
(3), satisfies the set of inequalities (12). We begin with the first inequality, 

uj<.us+ I (A.1) 

and note that it will be satisfied when 7 -- 0 because the ground state will be 
of the form 

~j = 2 (A.2) 

for all j, where 9~ is some (absolute) minimum of V*: this state clearly 
minimizes both the V and W contributions to H. 

Suppose next that 7 > 0. Then there is a a < 0 such that 

W o ( y )  = Wo(y )  - ay (A.3) 

has a (unique) minimum at y = 0. Let H be the energy function obtained 
by replacing Wo with l~o. For any configuration u of N +  1 atoms 
numbered j = 0, 1 ..... N it is the case that 

H(u)  = H(u)  - o'(u N - -  /'/0) (A.4) 

Now t~, (A.2), is clearly a ground state o f / t ,  and if u is a ground state of H, 
we have the inequalities 

H(u)  + a(Uu -- UO) = H(u)  ~< H(5) =/7(~) ~</-I(u) (A.5) 

upon noting that ~, = 5o. Since a is negative, we conclude that 

U N ~ U 0 (A.6) 

The first inequality in (12) is then a consequence of the following 
result. 

L e m m a .  Let {us}, O<<.j<~N, be any set of real numbers satisfying 
Uo <~ UN, and let ~xs} be the same set of numbers rearranged in increasing 
order, 

Xo<~Xl <~ . . -  <~xN (A.7) 
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Let W(y) be a convex function with the property W(y) > W(0) whenever y 
is negative. Then 

N N 

W{Xj--Xj 1)~ ~ W(~j--uj 1) ( A . 8 )  
j = l  j = l  

and if for some j it is the case that u j< uj_ l, the inequality (A.8) is strict. 
The lemma, whose proof is given below, implies (A.1), for the 

following reason. If u is a ground state of H, then it satisfies (A.6), and 
since Wo is strictly convex with a positive minimum, W =  Wo obviously 
satisfies the conditions of the lemma. Were (A.1) not valid, (A.8) would 
hold as a strict inequality, making the {xj} a state of lower energy than the 
{uj}, contradicting the assumption that u is a ground state; note that the 
contribution to H from V= V* is the same for the {xi} and the {uj}. 

The second inequality in (12) can be handled in exactly the same 
manner by defining 

f i j=j-uj (a.9) 

17V0(y) = Wo(1 - y) (a.10) 

~*(x)= v * ( - x )  (A.11) 

and noting that, because of the periodicity of V*, 

/4(fi)=H(u) (A.12) 

where /4 is obtained by using I~ o and l)* in place of W o and V*. The 
minimum ~ of ff/o is equal to 1 - 7, and thus the previous argument applied 
t o / 4  yields (A.1), with fi in place of u, as long as 7 ~< 1. This then translates, 
using (A.9), into the second inequality in (12). 

The lemma is proved as follows. Define the quantities 

~j= x j -  xj 1; flj= u j -  uj_ l (A.13) 

The a's are nonnegative numbers, and the fi's can be expressed as linear 
combinations of the cds through the formula 

fij = ~ Bj~ c~ (A.14) 
k 

Here we assume that Bjk = 0 if either flj = 0 or e~ = 0. If flj > 0, then the 
nonzero Bi~ are all + 1; if flj < 0, the nonzero Bjk are all - 1. For a given k, 
let J~- and Jk- be the sets of j values for which Bjk= +1 and -1 ,  
respectively. 
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Condition (A.6) implies that for every k for which c~ > 0, J+ is not 
empty, and contains either the same number of elements as J/- or one 
more. (One way to see this is to draw a graph of uj as a function of j, 
connecting successive points with straight lines.) The desired inequality 

N N 

j = l  j = l  

can be obtained by showing that the partial derivative of the left side with 
respect to any nonzero c~k does no t  exceed to corresponding partial 
derivative of the right side, that is, 

W'(c~k) ~ ~, Bjk W'(fij) (A.16) 
J 

This can be rearranged in the form 

m'(~k)+ ~ m'(-I~jl)~ ~ w'(~j) (A.17) 
J~J; J~S2 

If J~  contains one more element than J~-, (A.17) follows from the obser- 
vation that W'(y) is monotone increasing in y, and the arguments of W' 
on the left side are obviously not greater than those on the right side. If J~- 
has as many elements as J ]  (which means--see above--that  J/- is not 
empty), one simply discards one of the terms on the left side whose 
argument is negative, noting that in such a case W' is necessarily negative. 

If W is not differentiable, one employs a similar argument with finite 
differences replacing derivatives. This is in any case a more "elegant" 
approach, though harder to explain. The strict inequality in (A.15) when 
some flj is negative comes by noting that this condition leads to a 
corresponding strict inequality in (A.17) for some k. 
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